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In this article estimation theoretic techniques are used to derive expressions
for the accuracy of the digital instrumentation subsystem (DIS) and telemetry
and command processor (TCP) computer methods of carrier power estimation.
Upon evaluation of these expressions it is found that the TCP method is presently
far more accurate than the DIS method. A procedure by which the DIS accuracy
can be greatly improved is also presented.

I. Introduction

At present there are two automated methods for esti-
mating the incoming carrier signal power at the DSIF
receivers. Both of these methods involve evaluation of
polynomial expressions of the receiver automatic gain
control (AGC) voltage. The coefficients of these poly-
nomials are determined during a pre-track calibration
period by applying least squares curve fitting techniques
to a set of carrier power versus AGC voltage data pairs.
The two estimation methods differ only in the number
of calibration data pairs supplied, the range over which
calibration data pairs are obtained, the degree of curve
fitting attempted and the sampling scheme used to mea-
sure the AGC voltage during actual operation.

The first of these methods resides in the DIS monitor
computer. Calibration of this method involves establish-
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ing ten signal power levels covering the full dynamic
range of the receiver. For each of these levels the DIS
computer samples the resulting receiver AGC voltage,
takes 1000 samples within a one-second period and forms
a sample mean. The least squares fitting algorithm oper-
ates on the resulting ten pairs of data to determine either
a third-order or second-order fitted polynomial. During
operation the AGC voltage is sampled at a sampling
interval of 1.0 seconds and a mean is computed after five
samples. The calibration polynomial is then evaluated
using this mean to produce an estimate of the received
carrier power.

The second method utilizes the TCP computer in es-
sentially the same way as the DIS computer is used in
the above method. Calibration in this case consists of
establishing three power level-AGC voltage pairs cover-
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ing an 8-dB range which is centered around the expected
power level for the pass. These three pairs of data are
then approximated by a first order least squares poly-
nomial. During operation the AGC voltage is also sam-
pled using a 1.0-second sampling interval. In this case,
however, each AGC voltage sample is used to produce a
signal power estimate.

To study the errors associated with these methods we
shall first consider the errors resulting from the calibra-
tion (i.e., curve fitting) process. At first this may appear
to be a classical problem of parameter estimation well
documented in the literature. For example, if we define
the parameter p to be a vector whose components are
the ideal polynomial coefficients, the matrix H to be the
transformation taking p into the noise-free observables
(calibration power levels), and the vector n to be the
vector of observation noise then it is a well-known result
(see, for example, Ref. 1) that the minimum variance
estimate of p and the resulting mean square error are
functions of the matrix H and the covariance matrix of
the noise vector n. However, in our problem there are
three deviations from the classical model. These are:

(1) The dimension of the ideal parameter is unknown.

(2) The dimension of the estimated parameter will be
less than (or at most equal to) the ideal parameter.

(3) Over the set of observations the noise variance
may vary over several orders of magnitude, yet the
curve fitting algorithms in the DIS and TCP assume
equal uncertainty in these observations.

The only deviation which causes any significant diffi-
culty is the first. Consequently, the dimension of the ideal
parameter will be approximated using as much insight as
possible.

After evaluating the calibration errors the operational
errors will be considered and the total estimation accu-
racies computed. In doing this we will find that the TCP
method of estimation is more accurate than the DIS
method, provided the received power level is within the
range of the TCP calibration. Techniques by which the
accuracy of the DIS method can be improved will also
be presented.

Il. Calibration Accuracy
A. Determination of the Noise-Free Model

In order to begin the analysis, we need some model
for the ideal (noise free) carrier power versus AGC
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voltage curve. To determine this model, extensive data
were taken at each of the six Deep Space Stations. Using
the station operating noise temperature, the variance of
each AGC voltage was computed. These data, consisting
of from 17 data pairs (for DSS 14) to 40 data pairs (for
DSS 12), were then exercised by a curve fit subroutine
available in the Univac 1108. This subroutine (Ref. 2)
examines polynomials of degree less than or equal to
some specified maximum (NMAX) which minimize the
weighted mean square error, where the weighting is per-
formed in accordance with the user’s ¢ priori estimate of
the observation errors. The coefficients of the highest
degree polynomial which produces a significant decrease
in this weighted mean square error are then outputted
from the subroutine, Note that the degree of this poly-
nomial will not necessarily be NMAX since the remain-
ing higher order polynomials may produce only an in-
significant decrease in the mean square error.

The above program was executed for each set of data
and for NMAX =234, :--,10. The following observa-
tions were made on the results:

(1) In all cases a sizable reduction in the mean square
error occurred when NMAX (and subsequently the
degree of the fitted polynomial) was allowed to
increase to three.

(2) In all caseswhere NMAX exceeded three, the sub-
routine either retained the third-order polynomial
or fitted higher order polynomials with only a slight
decrease in the mean square error.

Based on these observations we can model the ideal
signal power y given the AGC voltage (x) by

Y = ao + ax + a;x® + ax® (1)

where a;, i =0, 1, 2, 3 are the coefficients of the third-
order polynomial determined by the subroutine and will
be different for each receiver (data set).

B. Derivation of the Mean Square Estimation Error

Using this noise-free model we can now derive the
expressions for the mean-square estimation error for each
of the curve-fitting algorithms.

1. Third-order curve fitting. For a specific value of
AGC voltage x let the corresponding power level be

given by Eq. (1) and let the estimated power level be
given by

9 = Db, + byx + byx* + byx® (2)
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Then, the mean-square error conditioned on a value of
x is given by
E{(y — 9)*/x} =
E{(a, — bo)?} + 2E{(a, — bo)(a, — by)}x

+ [2E{(a, — bo)(a. — b,)} + E{(a, — b,)*}]a*

+ 2[E{(a; — b\)(a. — b,)} + E{(a, — b,)(a; — by)} s

+ [2E{(a, — by)(as — by)} + E{(a. — b,)*} ]x*

+ 2E{(a> — b.)(a; — by)}x® + E{(a; — b,)?}x? (3)

)
)

Now, if we define the ideal coefficient vector a and the
estimated coefficient vector b by

0

(4)

2

b
a, b,

b

b,

and consider the coefficient estimation error covariance
matrix

G=E{(a—b)a—-b)} =[g,l; ij=1234 (5
then Eq. (3) can be more compactly expressed as

E{ly — 9)"/x} = gu + 2gux + [281; + goo]a®
+ 2[g23 + giea® + [2g24 + Zas ]t
+ 2g;x5 + g x° (6)
This sixth-order polynomial yields the desired mean-

square error for a specific value of AGC voltage once we
have determined the matrix G.

2. Second-order curve fitting. For a given value of x
the ideal power level is again given by Eq. (1). However,
we now estimate this power level by

9 =0, + bix + bia?
The conditional mean-square error is then given by
E{(y — §)*/x} =E{(as — b%)*} + 2E{(a, — bi)(a, — b}))x
+ [2E{(a, — bi)(a. — bi)} + E{(a, — b})?}]a?
+ 2[asE{a, — by} + E{(a, — b})(a. — by)} ]x®
+ [2a;:E{a, — b}} + E{(a, — b})?}]x*
+2a;E{a; — bi}x* + ax® )
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If we define the vectors

a, b;
a=|a |andW =] D] (8)
a, b}

and consider the coefficient estimation error covariance
matrix

H=E{(a’ — V)& — )7} = [h;;]; i,j=123 (9)

then the mean-square error polynomial becomes

E{(y —9)*/x} = hyy + 2hyox + [2hyy + hyo]n
+ 2[acas — a;E{b}} + has]a® (10)
+ [2a4,a85 — 2a;E{b}} + hy,]xt
+ 2a,[a, — E{b}}]x® + a2x®
Note that this time we must not only compute the co-

variance matrix of the coefficient estimation error but
also the mean of the estimated coefficients as well.

3. First-order curve fitting. Defining the power level
estimate as § = b + b/’ x and repeating the above steps
we have that
E{(y — §)*/x} = fu + 2frox + [2a,a, — 2a,E{b}} + f2n]x?

+ 2[aca; — a;E{b}} + a.a, — a.E{b} }]x?
+ [az + 20,0, — 2a,E{b!}]x*
+ 2a,a:x° + a2x® (11)

where f;, i,j = 1,2 are the elements of the coefficient
estimation error covariance matrix

F=E{(a” = b")(@” — b")"} = [fi;] (12)

and the vectors a” and b” are defined by

’? aO b’l b")’ 13
* _I:a1 ' _l:b;’ (13)

C. Derivation of the Mean and Error Covariance of
the Estimated Coefficients

To evaluate the statistical properties of the estimated
coefficient vectors we must determine the effects of the
calibration data errors on the curve fitting routines. Let us
consider a set of established power levels y;, i = 1,2, - - -, n,
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For each y; there corresponds some ideal AGC voltage
«} such that

Yi = Gy + a} + ax(xf)? + ay(x5)?

However, when y; is established during the calibration
phase, the computer (DIS or TCP) measures the AGC
voltage x; = x; + A; where it is assumed that A; is a zero
mean gaussian random variable with E(A?) = ¢%. Further-
more, we assume E{A;A;} =0 for is%j. In order to
consider the calibration error problem as a parameter
estimation problem we need to translate the error in the
AGC voltage into an equivalent error in the carrier power
level. Therefore, let us consider some ideal carrier power
yoi which corresponds to the measured value of AGC
voltage; that is

Yoi = Gy + ayx; + axx7 + ax}
Substituting x; = x} + A;

Yoi = yi + [a; + 2a.x; + 3ay(x})?]
X A; + (02 + Sasx,i)A% + asA}

Substituting again for «} and solving for y; yields

Yi = Yoi — (@, + 2a.x; + 3azx?)
X A; + (@, + 3asx;)A? — a,A? (14)

Thus, the power level supplied to the computer can be
considered as consisting of an ideal power level y,; plus
an error term where both depend on the known (sampled)
value of the AGC voltage.

When all of the data have been entered into the com-
puter the curve fitting program first places the AGC
voltage values in a matrix of the form (Ref. 3)

1 ox, 22 eoe x2]
1 %, a2 o0 7
x={ = (15)

1 Xy x':,’ cee x;n

where the number of rows equals the number of data
pairs entered and the number of columns m is one larger
than the degree of polynomial to be fitted. The program
also arranges the signal power levels in a vector of the
form
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Y=|" (16)

The coefficients of the fitted polynomial are then deter-
mined by the expression

b = (X"X)"X" Y (17)

where b is the estimated coefficient vector

and b, are the fitted coefficients of x*. We can now con-
sider the statistics of b for the three curve fitting algo-
rithms. For notational simplicity, it is assumed that the
X matrix has been restricted to the proper dimension for
the degree of polynomial to be estimated (i.e., the num-
ber of columns is one larger than the degree of the fitted
curve),

1. Third-order curve fitting. For the third-order al-
gorithm we only need to compute the covariance matrix
of the coefficient estimation error G. From Eqs. (14) and
(16) we see immediately that the vector Y can be ex-
pressed as

Y=Y, —« (18)
where
on
Yoz
Y, =| ° (19)
| Yon ]

and the error vector « is given by

C(ay + 2a5%, + 3a:x3)A; — (6: + 3a:x)A2 + a:A7 7
(ay + 28.%, + 3a:x2)A, — (@, + 3a.x,)A2 + a;A3

| (@, + 2a,x, + 3asx2)A, — (@2 + 3asx,)A2 + a;A3 ]
(20)
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Now, if we use the definitions of a and b given in Eq.
(4) and note that

Y, =Xa (21)
then Eq. (17) becomes
b =a — (X7X)"'X’«x (22)
and the covariance matrix is given by

G = E{(a —b)(a — b)"} = (X"X)"' X" E{axaT} X(XTX)!
(23)
Now consider the components of the matrix E{aa?}.

From Eq. (20) if we let :; be the i* component of «
then we have for i=4j

E{oia;} = (a, + 3asx:) (@2 + 3a:%;) o o2 (24)
and for i = j
E{a3} = (a, + 2a.%; + 3a.x2)0?

-+ 3[((12 + 3d3xi)2 + 2(a, + 2a,%; + 3a3x§)] (0?)2
+ 1542 (03)* (25)

Or, by defining the matrix C = [Cy;]; ij=12,,n
where

Ci i = E { (Xi(lj}
then the final form of the covariance matrix is

G = (X7X)~X” CX(X"X)" (26)

2. Second-order curve fitting. To evaluate the errors
associated with the second-order algorithm we must
compute the mean of the estimated coefficient vector as
well as the error covariance matrix. We still have the
relationship

Y=Y —«
However, due to the decreased dimension of the X
matrix, Eq. (21) is no longer valid. We can nevertheless

use the definitions given in Eq. (8) and show that

Y =X« +a,x* -« (27
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where the vector x? is given by

x2
x3
xo| . (28)
"
Making this substitution Eq. (17) becomes
b =a’ + (X7X)X7 (g;x* — ) (29)

From this equation we see that the expected value of
b is

E{W} = o + (XTX)"X (ax* — E{a})  (30)
or by defining
a,i = a?’x;/.i -+ (az + 303xi)0'? (31)

then

E{bj} =a; + E Ujir, 5 0, =012
k=1
(32)
where U, ; is the (if)*" element of the matrix (X7X)-XZ.
For the error covariance matrix we have from Eq. (9)

H = E{(& - b)(a’ — b)7)
= (X'X) X7 E{(a;x* — o) (a,x* — )7} X(X7X)~
(33)
Considering the components of this expectation we have
E{(asx} — ;)(asx] — o;)}
= ajxixi — ax} E{o;} — axx? E{o;} + E{o;0;}
(34)
Using Eq. (24) we see that for i<

E{(asx} — ai)(agx§ —a)}
= ajxix} + agx} (a, + 3a;x;) o2
+ azx? (a, + 3asx;) o2

+ (a2 + 3asx:) (a; + 3a4%;) 0t 02 (35)
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and with the aid of Eq. (25) we have for i =3

E{(asx} — o:)*}
= a2x¢ + [2a:x3(a, + 3asx;) + (a, + 2a,x; + 3ax2)] o?
+ 3[(a; + 3asx;)? + 2as(a;, + 2a,x; + 3azx2)] (0?)?
+ 15 a2(o?)® (36)
As in the previous case we will define a matrix
Cc=1[Cyl; i =12,,n
where

C’,= E{(asx? — a:)(asx? — a;)}

so that the error covariance matrix can be more com-
pactly given by

H = (X7X)XT C’X(X7X)* (37
3. First-order curve fitting. The procedure for the first
order algorithm is essentially the same as the second

order case above. That is, we use the definitions of a”
and b” in Eq. (13), recognize that

Y,=Xa"” + a,x® + a;x* — (38)
and use Eq. (17) to obtain
b” = a” + (XTX)X7 (a,x? + a:x® — «)

where

xz=| * (39)

2
— "N

The expected value of b” is

E{b”} = a” + (XTX) X7 (a,x? + a;x*® — E{a})
(40)

or in terms of its components

E{b;’} = a; + E U;'+1,k Cl,;’ (41)
k=1
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where U, ; is the (i,f)'* component of (X7X)X” and
o = ax; + axx} + (a: + 3asxy) o (42)
Likewise, the covariance matrix F is given by

F = (X7X)' X" E{(a-x* + a:x* — &)
X (a:;x* + a,x® — &)} X(X7X)™ (43)

where we have for i 54§

E{(axx? + asx} — a;)(ax? + agx} — a;)}
= x3x3[a2 + a2 x;x; + @.a5(x; + ;)]
+ (ax% + azxt)(a; + 3asx;) o?
+ (a.x2 + asx?)(a, + 3asx;) of
+ (a. + 3azx;)(a; + 3asx;) olo? (44)

and fori =7

E{(ax? + azx? — a;)?}
= (a, + asx;)*x}
+ [2x2(a, + asx:)(@: + 3a5%;) + (a1 + 2a2%; + 3azx?)] o}
+ 3[(a. + 3asx:)* + 2a4(a; + 2a,x; + 3asx3)] (03)*

+ 15 a2 (¢%)° (45)
Using a more compact notation
H = (X7X)*X7 C”X(XTX)? (46)
where
c”=[Cyl; if =12, n
and

7= E{(axx? + agx} — a;)(a:%% + asx} — )}

(47)
D. Calculations

A computer program was written to evaluate the co-
efficients of Eqgs. (6), (10) and (11) using the appropriate
covariance matrices (Eqs. 26, 37 and 46) and coeflicient
mean expressions (Egs. 32 and 41). To determine the DIS
computer calibration errors, calibration data sets for each
of six Deep Space Stations were compiled. Each data set
consisted of ten uniformly spaced values of AGC voltage
covering the full dynamic range of the associated receiver
as well as the variance for each value of voltage. For the
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sake of definition the “full dynamic range” was defined
as AGC voltages corresponding to signal power levels
from —110 dBmW to 4 dB above threshold. The result-
ing sixth-order polynomials in x (AGC voltage) were then
plotted for AGC voltages in the range from 0 to —8.0 V.
Figure 1 shows these results where the number asso-
ciated with each curve indicates the degree of the curve-
fitting algorithm. Similar plots were obtained for each of
the other data sets.

To better understand the behavior of the DIS calibra-
tion errors, the above quantities were recomputed using
semi-full and restricted range calibration data sets. The
semi-full range consisted of ten uniformly spaced values
covering power levels from —110 dBmW to — 160 dBmW.
The restricted range data set consisted of ten uniformly
spaced values covering the power range from —130
dBmW to —150 dBmW. The results are shown in Figs.
2 and 3.

The calibration accuracy expressions (Egs. 10 and 11
only) were also evaluated for the TCP calibration method.
To accomplish this, data sets of three AGC values cov-
ering an 8-dB signal power range and centered at — 144
dBmW were formed. A typical result is shown in Fig. 4.

Figures 1 to 4 may be of interest in showing how the
calibration errors behave but are of limited use in making
quantitative comparisons of calibration techniques. What
is needed is some kind of a figure of merit for each cali-
bration technique. The most logical quantity is to con-
sider the integral mean square error defined by

e / E{(y — §)/x) dx (48)

Xy — Xy

v

%, and x, are normally taken to be the extreme values of
AGC voltage associated with the calibration data range.
This quantity was computed for each of the six stations
and each of the calibration techniques discussed above.
Then an average over the six stations was taken to deter-
mine the figure of merit (actually figure of error) for each
technique. A comparison of these quantities for the DIS
computer is given in Table 1.

Comparison of these quantities for TCP and DIS com-
puters might be somewhat misleading due to the large
differences in calibration ranges. Consequently, Eq. (48)
was reevaluated for the DIS using values of x, and «x,
which correspond to the calibration limits of the TCP.
The results are given in Tables 2, 3 and 4.
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We see from Table 1 that the present method of DIS
calibration is quite inaccurate and in fact produces a
calibration error standard deviation in excess of 0.3 dB.
Comparing the DIS and TCP in Table 2 we find that the
DIS has a calibration error more than two orders of
magnitude larger than the TCP. Also from Tables 1 and 2
we see that the DIS error can be significantly reduced
by using the third order algorithm in the DIS.

The DIS error can be further reduced by restricting
its calibration range. From Table 3 it is evident that the
DIS and TCP have equivalent calibration errors when
the DIS uses the third order method and the semi-full
calibration range. By further restriction of the DIS range
we see from Table 4 that the DIS actually becomes more
accurate.

Ill. Total Carrier Power Estimation Accuracy

The total estimation mean square error will be the
sum of the calibration and the operational mean square
errors. The operational errors include the effects of AGC
variation (from receiver front end noise), operational
AGC sampling and A/D converter quantization. Evalua-
tion of the operational errors results in the curves shown
in Fig. 5 (for the DIS) and Fig. 6 (for the TCP).

Also shown in Figs. 5 and 6 are certain calibration
errors. In Fig. 5, we see that for the present method of
calibration, the DIS estimation accuracy is completely
dominated by the calibration accuracy and is much more
inaccurate than the TCP method of carrier power esti-
mation. Furthermore, the accuracy of the DIS can be
significantly improved by using the techniques described
above. For example, by using the semi-full calibration
range and the third-order algorithm, the standard devia-
tion of the DIS estimation error will drop from approxi-
mately 0.3 to about 0.01 dB, allowing the TCP and DIS
to have approximately the same accuracies.

IV. Conclusion

In this article the expressions for the mean square
calibration errors of the TCP and DIS computer algo-
rithms used in carrier power estimation were presented
and evaluated. When these results were combined with
the associated operational errors, it was found that for
the present calibration methods the TCP method of esti-
mation is far more accurate than the DIS method. Also, it
was noticed that the accuracy of the DIS method can be
significantly improved by a slight alteration of the DIS
calibration method.
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Table 1. DIS computer mean square calibration error

Integral mean square calibration error, (dB)?2

AGC Degree

Table 3. Comparison of DIS and TCP computer mean
square calibration errors when the DIS is calibrated
using the semi-full data range

Band-  of curve Full Semi-full Restricted
width fit calibration calibration calibration
range range range
Narrow 3 4.67 X 10-8  1.78 X 104 2.97 X 105
2 *9.35 X 1072 5.51 X 10-2 9.47 X 10~
Medium 3 2.24 X 102 8.23 X 10~ 1.38 X 10
2 *1.11 X 1071 5.59 X 10-2 1.05 X 103
Wide 3 3.13 X 102 1.04 X 1073 1.67 X 10-*
2 *1.26 X 1071 5.60 X 1072 1.08 X 103

* = present method of calibration.

Table 2. Comparison of DIS and TCP computer mean
square calibration errors when the DIS is calibrated using
the full data range

DIS calibration error, (dB)2

AGC TCP calibration
bandwidth NFIT = 3 NFIT = 2 error, {dB) 2
Narrow 5.31 X 10-5 9.51 X 102 1.66 X 10-%
Medium 2.46 X 10-4 9.73 X 102 1.63 X 104
Wide 3.08 X 10-4 9.73 X 102 1.62 X 10~

Table 4. Comparison of DIS and TCP computer mean
square calibration errors when the DIS is calibrated
using the restricted data range

DIS calibration error, {dB)2

DIS calibration error, (dB)2

AGC TCP calibration AGC TCP calibration
bandwidth NFIT = 3 NFIT = 2 error, (dB)?2 bandwidth NFIT = 3 NFIT = 2 error, {dB) 2
Narrow 1.88 X 103 *6.40 X 1072 1.66 X 10~¢ Narrow 9.16 X 106 4.98 X 104 1.66 X 104
Medium 4.58 X 103 *6.66 X 1072 1.63 X 10* Medium 4.23 X 10°° 5.24 X 104 1.63 X 10~*
Wide 5.82 X 103 *6.75 X 102 1.62 X 10~ Wide 5.28 X 10°5 5.32 X 10¢ 1.62 X 104
* = present method of calibration.
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Fig. 1. DIS mean square calibration error when cali-
brated over full dynamic range for: (1) first-order, (2)
second-order, and (3) third-order curve fitting
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Fig. 2. DIS mean square calibration error when cali-
brated over semi-full dynamic range for: (1) first-order,
(2} second-order, and (3} third-order curve fitting
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Fig. 3. DIS mean square calibration error when cali-
brated over restricted range for: (1) first-order, {2) second-
order and (3} third-order curve fitting
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Fig. 4. TCP mean square calibration error for: (1) first-
order, and (2} second-order curve fitting
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Fig. 6. Comparison of the TCP calibration and
operational errors
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